ON THE MOTION OF PENDULUMS. 3 the effects of air at the atmospheric pressure and under a pressure of about half an atmosphere were found to be as nearly as possible proportional to the densities, it was found that the effect of hydrogen at the atmospheric pressure was much greater, compared with the effect of air, than corresponded with its density. In fact, it appeared that the ratio of the effects of hydrogen and air on the times of vibration was about 1 to 5J, while the ratio of the. densities is only about 1 to 13. In speaking of this result Colonel Sabine remarks, " The difference of this ratio from that shewn by experiment is greater than can well be ascribed to accidental error in the experiment, particularly as repetition produced, results almost identical. May it not indicate an inherent property in the elastic fluids, analogous to that of viscidity in liquids, of resistance to the motion of bodies passing through them, independently of their density ? a property, in such case, possessed by air and hydrogen gas in very different degrees; since it would appear from the experiments that the ratio of the resistance of hydrogen gas to that of air is more than double the ratio following from their densities. Should the existence of such a distinct property of resistance, varying in the different elastic fluids, be confirmed by experiments now in progress with other gases, an apparatus more suitable than the present to investigate the ratio in which it is possessed by them, could scarcely be devised: and the pendulum, in addition to its many important and useful purposes in general physics, may find an application for its very delicate, but, with due precaution, not more delicate than certain, determinations, in the domain of chemistry." Colonel Sabine has informed me that the Experiments here alluded to were interrupted by a cause which need not now be mentioned, but that as far as they went they confirmed the result of the experiments with hydrogen, and pointed out the existence of a specific action in different gases, quite distinct from mere variations of density. Our knowledge on the subject of the effect of air on the time of vibration of pendulums has received a most valuable addition from the labours of the late Mr Baily, who erected a vacuum apparatus at his own house, with which he performed many hundreds of careful experiments on a great variety of pendulums. The experiments are described in a paper read before the Royal Society on the 31st of May 1832. The result for each pendulum is expressed by the value of n, the factor by which the old correc- 1—2